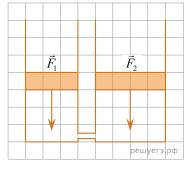

Централизованное тестирование по физике, 2012

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Прибор, предназначенный для измерения объема тела, это:
 - 1) секундомер 2) вольтметр 3) амперметр 4) мензурка 5) психрометр
- **2.** В момент времени $t_0=0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_1=-17t+1,1t^2$ и $x_2=23t-1,4t^2$ (x_1,x_2 в метрах, t в секундах), то тела встретятся через промежуток времени Δt , равный:
 - 1) 10 c 2) 11 c 3) 12 c 4) 14 c 5) 16 c
- **3.** Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=38$ км/ч, второй $<v_2>=50$ км/ч, третий $<v_3>=53$ км/ч, то всю трассу велосипедист проехал со средней скоростью <v>=0 пути, равной:
 - 1) 44 км/ч 2) 45 км/ч 3) 46 км/ч 4) 47 км/ч 5) 48 км/ч

4. К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации, обозначенной на рисунке цифрой:



5. С башни в горизонтальном направлении бросили тело с начальной скоростью, модуль которой $v_0 = 6$ м/с. Через промежуток времени $\Delta t = 0.8$ с после момента броска модуль скорости v тела в некоторой точке траектории будет равен:

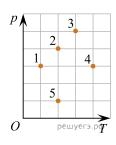
- 1) 2 м/c
- 2) 4 m/c
- 3) 6 m/c

5) 10 m/c

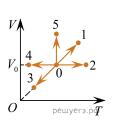
6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы $\vec{F_1}$ и $\vec{F_2}$, направления которых указаны на рисунке. Если модуль силы $F_2 = 64$ H, то для удержания системы в равновесии модуль силы F_1 должен быть равен:

- 1) 36 H 2) 48 H
- 3) 64 H
- 4) 81 H

4) 8 m/c


5) 95 H

7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:


Измерение	Температура, К	Давление, кПа	Объем, л
1	280	150	15,5
2	310	150	17,2
3	340	150	18,8
4	370	150	20,5
5	400	150	22,2

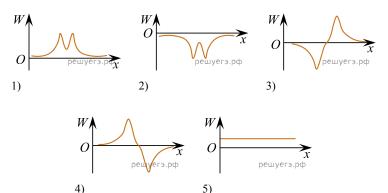
Такая закономерность характерна для процесса:

- 1) изохорного
- 2) адиабатного
- 3) изотермического 5) циклического
- 4) изобарного
- **8.** На p-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

- 1) 1 2) 2 3)3
- 9. На V—Т диаграмме изображены пять процессов с идеальным газом, масса которого постоянна. При постоянной плотности ρ давление газа р увеличивалось в процессе:

- 1)0-1

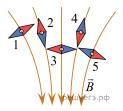
- 5)0-5


5)5

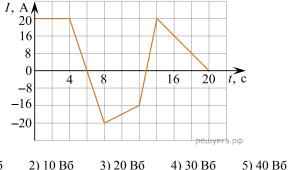
10. Если в результате трения о шерсть эбонитовая палочка приобрела отрицательный заряд q= -8 нКл, то общая масса m электронов, перешедших на эбонитовую палочку равна:

1) 9,1
$$\cdot$$
 10⁻¹⁷ Γ 2) 8,8 \cdot 10⁻¹⁷ Γ 3) 7,6 \cdot 10⁻¹⁷ Γ 4) 6,4 \cdot 10⁻¹⁷ Γ

11. Точечный положительный заряд q_0 движется параллельно оси Ох, проходящей через неподвижные точечные отрицательные заряды q_1 и q_2 (см. рис.). Если $q_2 = q_1$, то график зависимости потенциальной энергии взаимодействия W заряда q_0 с неподвижными зарядами от его координаты x приведен на ри- \overline{O} сунке, обозначенном цифрой:

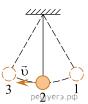


Примечание: влиянием неподвижных зарядов на траекторию движения q_0 пренебречь. Условие уточнено редакцией РЕШУ ИТ.


- - 3) 3 5) 5
- 12. Пять резисторов, сопротивления которых $R_1 = 120 \text{ Om}$, $R_2 = 30 \text{ Om}$, $R_3 = 15 \text{ Om}$, $R_4 = 120 \text{ Om}$ 60 Ом и $R_5 = 24$ Ом, соединены параллельно и подключены к источнику постоянного тока. Если в резисторе R_1 сила тока $I_1 = 0,1$ A, то сила тока I в источнике равна:
 - 1) 2,0 A 2) 2,4 A 3) 3,5 A 4) 4,6 A

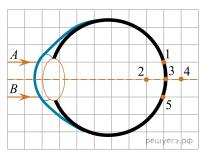
- 5) 4,8 A
- **13.** В магнитное поле, линии индукции \vec{B} которого изображены на рисунке, помещены небольшие магнитные стрелки, которые могут свободно вращаться. Южный полюс стрелки на рисунке светлый, северный — темный. В устойчивом положении находится стрелка, номер которой:

1) 1 5) 5


14. На рисунке изображен график зависимости силы тока I в катушке индуктивности от времени t. Если индуктивность катушки $L = 2.5 \, \Gamma$ н, то собственный магнитный поток Φ , пронизывающий витки катушки, в момент времени t = 16 с равен:

3) 20 Вб 1) 5 B₀ 2) 10 B₆ 4) 30 B₆

15. Математический маятник совершает свободные гармонические колебания. Точки 1 и 3 — положения максимального отклонения груза от положения равновесия (см. рис.). Если в точке 1 фаза колебаний маятника φ_1 = $\pi/2$, то в точке 3 фаза колебаний φ_3 будет равна:


Условие уточнено редакцией РЕШУ ИТ.

1) 0 2) $\frac{\pi}{2}$ 3) $\frac{3\pi}{2}$ 4) 2π

16. На рисунке изображен глаз человека. Если лучи света A и B пройдут через точку, обозначенную цифрой ..., то у человека дефект зрения — близорукость.

Условие уточнено редакцией РЕШУ ИТ.

1) 1 2) 2 3)3 5) 5

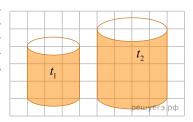
17. Катод фотоэлемента облучается фотонами энергия которых E = 11 эВ. Если минимальная энергия фотонов, при которой возможен фотоэффект $E_{\min} = 4$ эВ, то задерживающее напряжение U_2 , равно:

> 1) 2 B 2) 4 B 3) 7 B 4) 11 B 5) 15 B

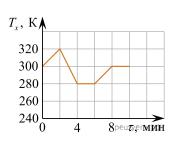
18. Число нейтронов в ядре одного из изотопов кремния N = 16, а удельная энергия связи $\varepsilon =$ $8,51~{
m M}{
m B}$ /нуклон. Если энергия связи нуклонов в ядре этого изотопа $E_{
m CB}=256~{
m M}{
m s}$ В, то его атомный номер Z равен:

> 5) 42 1) 11 2) 14 3) 27 4) 32

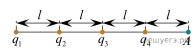
19. Диаметр велосипедного колеса d = 66 см, число зубьев ведущей звездочки N_1 = 32, ведомой — N_2 = 21 (см. рис.). Чтобы ехать с постоянной скоростью, модуль которой $V=18~{\rm KM/Y}$, велосипедист должен равномерно крутить педали с частотой у равной ... **об/мин**.


20. К бруску массой m = 0.64 кг. находящемуся на гладкой горизонтальной поверхности. прикреплена невесомая пружина. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l = 15 см). Если длина пружины в недеформированном состоянии $l_0 = 11$ см. а модуль ускорения бруска a = 3 м/с², то жесткость k пружины равна ... Н/м.

21. На дне вертикального цилиндрического сосуда, радиус основания которого R = 10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=201 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды (ho_{B} $= 1.00 \, \text{г/см}^3$), равный ... **см**³.

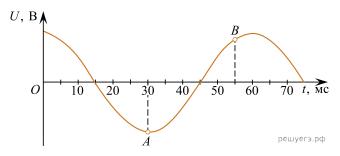

22. На невесомой нерастяжимой нити длиной l = 72 см висит небольшой шар массой M =34 г. Пуля массой m=3 г. летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости υ_0 пули, равном ...м/с.

23. Идеальный одноатомный газ, начальный объем которого V_1 , а количество вещества остается постоянным, находится под давлением $p_1 = 7 \cdot 10^5$ Па. Газ охлаждают сначала изобарно до объема $V_2 = 2 \text{ м}^3$, а затем продолжают охлаждение при постоянном объеме до давления $p_2 =$ $2 \cdot 10^5$. Если при переходе из начального состояния в конечное газ отдает количество теплоты Q =5 МДж, то его объем V_1 в начальном состоянии равен ... \mathbf{M}^3 .


24. Два однородных цилиндра (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого цилиндра $t_1 = 6$ °C, а второго — $t_2 = 97$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t цилиндров равна ... °C.

25. На рисунке изображен график зависимости температуры $T_{\rm X}$ холодильника тепловой машины, работающей по циклу Карно, от времени τ . Если температура нагревателя тепловой машины $T_{\rm H}=287$ °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.

26. Четыре точечных заряда $q_1=9,6$ нКл, $q_2=-1,8$ нКл, $q_3=1,6$ нКл, $q_4=-5,6$ нКл расположены в вакууме на одной прямой (см. рис.). Если в точке A, находящейся на этой прямой на расстоянии l от заряда q_4 , модуль на-



пряженности электростатического поля системы зарядов $E=48~{\rm kB/m},$ то расстояние l равно ... мм.

27. Аккумулятор, ЭДС которого $\varepsilon=1,6$ В и внутреннее сопротивление r=0,1 Ом, замкнут нихромовым (c=0,46 кДж/(кг · K) проводником массой m=39,1 г. Если на нагревание проводника расходуется $\alpha=75\%$ выделяемой в проводнике энергии, то максимально возможное изменение температуры $\varDelta T_{\rm max}$ проводника за промежуток времени $\varDelta t=1$ мин равно ... K.

28. Тонкое проволочное кольцо радиусом r = 5.0 см и массой m = 98.6 мг, изготовленное из проводника сопротивлением R = 40 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 1.0 Тл/м, x — координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 10$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.

29. Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}=30$ мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}=55$ мс равно $U_{\rm B}$. Если разность напряжений $U_{\rm B}-U_{\rm A}=79$ В, то действующее значение напряжения $U_{\rm A}$ равно ... **B**.

30. На дифракционную решетку падает нормально параллельный пучок монохроматического света длиной волны $\lambda=625$ нм. Если максимум четвертого порядка отклонен от перпендикуляра к решетке на угол $\theta=30,0^\circ$, то каждый миллиметр решетки содержит число N штрихов, равное